Variation Inequalities for the Hardy-Littlewood Maximal Function on Finite Directed Graphs

نویسندگان

چکیده

In this paper, the authors establish bounds for Hardy-Littlewood maximal operator defined on a finite directed graph G→ in space BVp(G→) of bounded p-variation functions. More precisely, obtain BVp norms MG→ some graphs G→.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Variation of the Hardy–littlewood Maximal Function

We show that a function f : R → R of bounded variation satisfies VarMf ≤ C Var f, where Mf is the centered Hardy–Littlewood maximal function of f . Consequently, the operator f 7→ (Mf) is bounded from W (R) to L(R). This answers a question of Hajłasz and Onninen in the one-dimensional case.

متن کامل

A Sharp Estimate for the Hardy-littlewood Maximal Function

The best constant in the usual L norm inequality for the centered Hardy-Littlewood maximal function on R is obtained for the class of all “peak-shaped” functions. A function on the line is called “peakshaped” if it is positive and convex except at one point. The techniques we use include variational methods. AMS Classification (1991): 42B25 0. Introduction. Let (0.1) (Mf)(x) = sup δ>0 1 2δ ∫ x+δ

متن کامل

Weighted Inequalities for the Two-dimensional One-sided Hardy-littlewood Maximal Function

In this work we characterize the pair of weights (w, v) such that the one-sided Hardy-Littlewood maximal function in dimension two is of weaktype (p, p), 1 ≤ p < ∞, with respect to the pair (w, v). As an application of this result we obtain a generalization of the classic Dunford-Schwartz Ergodic Maximal Theorem for bi-parameter flows of null-preserving transformations.

متن کامل

Hardy-littlewood Type Inequalities for Laguerre Series

Let {cj} be a null sequence of bounded variation. We give appreciate smoothness and growth conditions on {cj} to obtain the pointwise convergence as well as Lr -convergence of Laguerre series ∑ cj a j . Then, we prove aHardy-Littlewood type inequality ∫∞ 0 |f(t)|r dt≤ C ∑∞ j=0 |cj| j̄1−r/2 for certain r ≤ 1, where f is the limit function of ∑ cj a j . Moreover, we show that if f(x) ∼ ∑cj a j is ...

متن کامل

Vector A2 Weights and a Hardy-littlewood Maximal Function

An analogue of the Hardy-Littlewood maximal function is introduced, for functions taking values in finite-dimensional Hilbert spaces. It is shown to be L bounded with respect to weights in the class A2 of Treil, thereby extending a theorem of Muckenhoupt from the scalar to the vector case. A basic chapter of the subject of singular integral operators is the weighted norm theory, which provides ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2022

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math10060950